Virtual/Augmented Reality (VR/AR) 101

Dr. Judy M. Vance Virtual Reality Applications Center (VRAC) Mechanical Engineering Department Iowa State University Ames, IA

Virtual Reality Applications Center

VR/AR for Transportation Research

Orlando, FL

L Oct 5, 2015

Virtual Reality

Virtual Reality Applications Center

VR/AR for Transportation Research

Virtual Reality

Virtual Reality Applications Center

Images courtesy of Idaho National Labs and Case New Holland Virtual Reality Applications Center VR/AR for Transportation Research

Orlando, FL

Virtual Reality

Images courtesy of Idaho National Labs and Case New Holland Virtual Reality Applications Center VR/AR for Transportation Research

Orlando, FL

Augmented Reality

Virtual Reality Applications Center

VR/AR for Transportation Research

VR/AR for Transportation Research

Vehicle Simulators

Virtual Reality Applications Center

VR/AR for Transportation Research

beach.

Virtual Reality Applications Center

VR/AR for Transportation Research

VR/AR for Transportation Research

Virtual Reality Applications Center

VR/AR for Transportation Research

tation Research Orlando, FL

VR/AR 101

What it is

How it works

Why should you care

Virtual Reality

A medium composed of interactive computer simulations that sense the participant's position and actions and replace or augment the feedback to one or more senses, giving the feeling of being mentally immersed or present in the simulation.

Sherman, W. R., Craig, A. B. 2003. Understanding Virtual Reality: Interface, Application, and Design, Morgan Kaufmann Publishing. Virtual Reality Applications Center VR/AR for Transportation Research Orlando, FL Oct 5, 2015

Augmented Reality

A technology that superimposes a computer-generated image on a user's view of the real world, thus providing a composite view.

VR/AR for Transportation Research

VR Characteristics

- Variable scale
- Human control of the view
- Ability to naturally interact with the computer images

https://www.youtube.com/watch?v=BrvwapIZXIw

Virtual Reality Applications Center

Asymmetric Interfaces for Bimanual Virtual Assembly with Haptics

https://www.youtube.com/watch?v=IL2Ha2Ymht4

To Make it Work

- Position Tracking Technology
- Display Technology
- Sensory Feedback

To Make it Work

- Position Tracking Technology
- Display Technology
- Sensory Feedback

Consumer Position Trackers

Virtual Reality Applications Center

VR/AR for Transportation Research

Consumer Position Trackers

Kinect

XBOX 360

Optical Tracking depth map

Virtual Reality Applications Center

Optical Tracking retroreflective balls

Optical Tracking active LEDs

Oculus Rift HMD

Infrared LEDs embedded in the headset

Magnetic Tracking

Electromagnetic source

VR/AR for Transportation Research

tation Research Orlando, FL

Inertial Tracking

Acoustic Tracking

Brain Computer Interface

Virtual Reality Applications Center

VR/AR for Transportation Research

To Make it Work

- Position Tracking Technology
- Display Technology
- Sensory Feedback

Multiple Projection Surfaces

CAVE

- 2 walls, 1 floor
- 3 stereo projectors
- Optical tracking
- Wii remote wand

Virtual Reality Applications Center

CAVE

VR/AR for Transportation Research

Projection systems

Reality Deck

Projection systems

Stereo Glasses

See Through Displays

Head Mounted Display (HMD)

Image courtesy of Lockheed Martin

Virtual Reality Applications Center

VR/AR for Transportation Research

See Through HMD

Virtual Reality Applications Center

Oculus Rift

Cell Phone HMD

Click to open expanded view

Zeiss Vr ONE Samsung Galaxy S5 Virtual Reality Headset

from Zeiss

☆☆☆☆☆ マ 4 customer reviews | 12 answered questions

Price: \$159.99 & FREE Shipping

Only 19 left in stock.

Ships from and sold by Wired Gadgets.

- With Limitless Possibilities With the VR ONE, the smartphone you carry in your pocket can take you to worlds of virtual and augmented reality. With already hundreds of apps available on Google Play and AppleApp Store made for mobile VR devices you can simply download and launch the app, lock your smartphone in the VR ONE precision tray and slide it in the VR ONE. Experience VR games, videos, and amazing experiences that were never before possible.
- The Zeiss VR ONE delivers an unrivalled viewing experience with Zeiss
 precision lenses and the 5.2 inch display of the Galaxy S5 providing stunning
 and engaging visuals at a mobile-leading resolution. With the VR ONE, the
 effect is the equivalent of sitting in the best seat of a theatre, being on-stage
 at a performance with full 360 degree 3D video, and being able to enjoy

Orlando, FL

Google Cardboard

Buy your new Cardboard 2.0 viewer from <u>I Am Cardboard</u> for \$19.99. Black, Blue, Red, Yellow, White and Brown.

VR/AR for Transportation Research

Build your own HMD

https://developers.google.com/cardboard/

Construct a VR viewer from everyday items you can find in your garage, online or at your local hardware store.

Here's what you need to get started:

Virtual Reality Applications Center

VR/AR for Transportation Research

Cell Phone and Tablet AR

Virtual Reality Applications Center

VR/AR for Transportation Research

Cell Phone and Tablet AR

Virtual Reality Applications Center

To Make it Work

- Position Tracking Technology
- Display Technology
- Sensory Feedback

Sound

- Increase awareness of surroundings
- Cue visual attention
- Convey a variety of complex information without taxing the visual system
- Enhances the visual experience

Object contact

http://people.rennes.inria.fr/Anatole.Lecuyer/vrst_sreng.avi

Virtual Reality Applications Center

VR/AR for Transportation Research

Orlando, FL

Haptics

To touch

Combination of Real and Virtual

Image courtesy of Ford Motor Co.

Virtual Reality Applications Center

Tangible Haptics

Steinicke, F., Bruder, G., Hinrichs, K., Jerald, J., Frenz, H., Lappe, M. 2009. Real Walking through Virtual Environments by Redirection Techniques. Journal of Virtual Reality and Broadcasting, 6(2).

Reconfigurable Tangibles

Aguerreche, L., Duval, T., Lecuyer, A. Reconfigurable Tangible Devices for 3D Virtual Object Manipulation by Single or Multiple Users, Proceedings of the 17th ACM Symposium on Virtual Reality Software and Technology, VRST '10, November 22-24, Hong Kong, China,

pp. 227-230.

Virtual Reality Applications Center

VR/AR for Transportation Research

https://www.youtube.com/watch?v=J1BIXBi4O1w

Virtual Reality Applications Center

Haptics

Haptic Device on a Mobile Robot Base

Iowa State University Virtual Reality Applications Center

https://www.youtube.com/watch?v=xQxNT1DAoT4

Why should you care?

- Do you need to communicate your ideas to someone else to either get their input or their buy-in during the decision making process?
- Does your data involve understanding spatial relationships?
- Is your data multidimensional?

Virtual Reality Applications Center

Where is VR/AR being used?

- Ergonomic analysis of product assembly or customer use
- Manufacturability of products
- Visibility studies of products
- Geotechnical data display
- Engineering analysis results display (fluid flow, structural strength, etc.)
- Design reviews

Where is VR/AR being used

- Communicating design intent to customers
- Interactive museum displays
- Advertising
- Identifing location of community resources
- Visualizing stock market trends
- • •

Quotes from Users

- Looking at certain components in CAD, they appear one size, but they are actually another size.
- It gave you a perspective of how far to kneel down to see that part engagement.
- Especially the view that you were bringing up while thinking about the clearances and the space within the unit. I didn't have that same perspective, but when you mentioned that and then I got a chance to look at it I thought – oh yea, now I can see it.
- Those bench tools aren't going to clog up the workspace as much as I thought.
- In 3D models (CAD) you can take a measurement of how far the distance is, but when you have the pump in real size, it actually makes a difference...because you have to get in, then walk around it.

Virtual Reality Applications Center

Quotes from Users

- You can always picture it in your head and imagine how it's going to move, but when you see it in VR, it's a different experience altogether.
- I thought it was funny that we went through the same meeting yesterday with everybody's laptops open, doing other work on the side and not fully engaged, and got completely different results when experienced it in VR.
- It's interactive. You're there. You're in it. Versus sitting in a conference room around a table. It's too easy to have your laptop open and do some other things. Here you are standing up, there's no surface for your laptop. You've got glasses on. It's just visual and immersive.
- Experiencing it in VR is definitely going to put me ahead of the game.
 When it comes to going to the supplier, I'm not going to be surprised in what I saw. I have clear expectations of it now.

Virtual Reality Applications Center

Virtual Reality isn't science fiction any more ...

Virtual Reality Applications Center

VR/AR for Transportation Research

It's for real!

Image courtesy of Lockheed Martin

Virtual Reality Applications Center

Thank you!

Dr. Judy M. Vance Virtual Reality Applications Center (VRAC) Mechanical Engineering Department Iowa State University Ames, IA

jmvance@iastate.edu www.vrac.iastate.edu/~jmvance

